notes / updates | multivariable calculus
November 3, 2025 | Plotting Vector-Valued Functions
October 15, 2025 | Problem 57, Section 11.5 with SageMath
# Section 11.4 | Problem 57
t = var('t')
P = sphere((0,2,1), 0.2, color='red')
Q = sphere((0,1,2), 0.2, color='purple')
line1 = parametric_plot3d((2*t,1-t,2+t),(t,-3,3))
v = vector([2,-1,1])
u = vector([0,1,-1])
proj = ((u.dot_product(v))/(norm(v)*norm(v)))*v
norml = u - proj
line2 = parametric_plot3d((0 +norml[0]*t,2+norml[1]*t,1+norml[2]*t),(t,-3,3))
P + Q + line1 + line2
September 25, 2024 | Some code for SageMath and Geogebra
# SageMath start
# To declare Point objects
A=(1,2,3)
B=(1,-2,5)
C=(3,1,5)
# To draw a vector as a geometric shape
arrow(A,B)
# To draw more than 1 vector (triangle rule)
arrow(A,B) + arrow(B,C) + arrow (A,C)
# To form a vector from points
AB = vector(B[0]-A[0], B[1]-A[1], B[2]-A[2])
BC = vector(C[0]-B[0], C[1]-B[1], C[2]-B[2])
# To print the vector:
AB
print("BC: ", BC)
# To plot vectors
plot(AC, start=A) + plot(AB, start=A) + plot(BC, start=B)
# To check if two vectors are equal
AB == BC
# SageMath end
# Geogebra start (save the document if you want to keep your work)
#declare Point objects
A=Point({1,1,1})
B=Point({-1,2,3})
C=Point({2,2,-1})
# form vectors from points
AB = Vector(A,B)
BC = Vector(B,C)
# Geogebra end